中国沙漠 ›› 2023, Vol. 43 ›› Issue (1): 197-211.DOI: 10.7522/j.issn.1000-694X.2022.00120
• • 上一篇
刘伟琦1,2(), 马绍休1(
), 宫毓来1,2, 冯坤1, 梁林昊1,2
收稿日期:
2022-08-19
修回日期:
2022-09-25
出版日期:
2023-01-20
发布日期:
2023-01-17
通讯作者:
马绍休
作者简介:
马绍休(E-mail: shaoxiuma586@163.com)基金资助:
Weiqi Liu1,2(), Shaoxiu Ma1(
), Yulai Gong1,2, Kun Feng1, Linhao Liang1,2
Received:
2022-08-19
Revised:
2022-09-25
Online:
2023-01-20
Published:
2023-01-17
Contact:
Shaoxiu Ma
摘要:
业务化农业干旱监测系统是农业干旱监测和预测以及农业风险评价和防范的有力工具,为了更好地促进农业干旱业务化监测的发展,系统回顾了基于气象变量、土壤湿度、植被状态和多变量等4类常用干旱指数,详细分析了美国、中国、欧洲和联合国粮食及农业组织等业务化农业干旱监测系统的特征,讨论了业务化农业干旱监测系统中存在的问题:如数据的质量及融合不稳定、综合干旱指数的构建不确定、监测的时间分辨率有待提高、缺乏考虑水文条件以及作物的生长过程等影响的问题。展望了未来农业干旱业务化监测,应从利用多源数据监测干旱、构建综合指标时需考虑区域时空差异及不同指标间的累积性和滞后性、加强机器及深度学习在综合指标构建中的作用、发展日时间尺度监测干旱以应对骤旱事件的发生、强化作物生长过程模型和先进的技术手段在干旱监测中的作用等方面深入发展。
中图分类号:
刘伟琦, 马绍休, 宫毓来, 冯坤, 梁林昊. 农业干旱业务化监测研究进展与展望[J]. 中国沙漠, 2023, 43(1): 197-211.
Weiqi Liu, Shaoxiu Ma, Yulai Gong, Kun Feng, Linhao Liang. Research progress and perspective for operationalization of agricultural drought monitoring[J]. Journal of Desert Research, 2023, 43(1): 197-211.
指数 | 输入变量 | 构建机理 | 优势 | 主要作者 |
---|---|---|---|---|
标准化降水指数(SPI) | P | 表征某时段内降水量出现的概率 | 变量少,多时间尺度 | McKee等[ |
标准化降水蒸散指数(SPEI) | P、PET | 表征某时段内水分亏缺出现的概率 | 考虑蒸散发,多时间尺度 | Vicente-Serrano等[ |
Palmer干旱指数(PDSI)[ | P、PET | 表征一段时间内,某区域实际水分供应持续地少于当地气候适应水分供应时发生的水分亏缺[ | 考虑径流和土壤条件 | Palmer |
自适应Palmer干旱指数(scPDSI) | P、PET | PDSI的修正版,根据不同区域的气候特点对PDSI校正参数 | 解决了PDSI的空间局限性 | Wells等[ |
蒸散发压力指数(ESI) | PET、ET | 描述了实际蒸散发和潜在蒸散发比值的异常 | 可监测骤旱 | Anderson等[ |
蒸散发需求干旱指数(EDDI) | PET | 基于大气蒸散发需求,考虑了蒸散发过程中的辐射强迫项和平流强迫项 | 多时间尺度,忽略下垫面的影响 | Hobbins等[ |
标准化土壤湿度指数(SSI) | SM | 表征某时段内的土壤湿度出现的概率 | 考虑了土壤含水量的分布特征 | Hao等[ |
土壤湿度距平指数(SMA) | SM | 表征与平均状态下土壤湿度的差距 | 消除了季节影响 | Sheffield等[ |
土壤湿度百分位数(SMP) | SM | 利用长期土壤湿度的百分位确定干旱程度的阈值 | 利于时空比较 | Shukla等[ |
土壤湿度指数(SMI) | SM、SMWP、 SMFC | 土壤水分含量与凋萎含水量的差值为土壤有效含水量的一半时,土壤开始受到水分的胁迫 | 考虑土壤性质,不需要长时间湿度数据 | Hunt等[ |
土壤水分亏缺指数(SWDI) | SM、SMWP、 SMFC | 当土壤水分含量开始低于田间持水量时,植物即将受到水分的胁迫 | 考虑了植物生理状态与土壤水分的关系 | Martínez-Fernández等[ |
植被条件指数(VCI) | NDVI | 在同期对各月NDVI归一化 | 消除地形、气候、植被覆盖的影响 | Liu等[ |
温度条件指数(TCI) | LST | 在同期对各月LST归一化 | 消除地形、气候、植被覆盖的影响 | Kogan[ |
植被健康指数(VHI) | NDVI、LST | 综合考虑VCI和LST,赋予它们相同的权重 | 同时考虑水和热的胁迫 | Kogan[ |
温度植被干旱指数(TVDI) | NDVI、LST | 由NDVI和LST确定干边和湿边的方程,表征作物面临水分胁迫的程度 | 适用于小区域的干旱监测 | Sandholt等[ |
作物缺水指数(CWSI) | PET、ET | 利用水分能量平衡原理,综合考虑土壤水分和农田蒸散发的关系 | 物理意义明确,适应性较强 | Jackson等[ |
水分亏缺指数(WDI) | Ts、Ta、SAVI | 以冠层温度为基础,在能量平衡双层模型的基础上建立 | 扩展了在低植被覆盖下的应用 | Moran等[ |
表1 常用监测农业干旱的指数
Table 1 The indices commonly used to monitor agricultural drought
指数 | 输入变量 | 构建机理 | 优势 | 主要作者 |
---|---|---|---|---|
标准化降水指数(SPI) | P | 表征某时段内降水量出现的概率 | 变量少,多时间尺度 | McKee等[ |
标准化降水蒸散指数(SPEI) | P、PET | 表征某时段内水分亏缺出现的概率 | 考虑蒸散发,多时间尺度 | Vicente-Serrano等[ |
Palmer干旱指数(PDSI)[ | P、PET | 表征一段时间内,某区域实际水分供应持续地少于当地气候适应水分供应时发生的水分亏缺[ | 考虑径流和土壤条件 | Palmer |
自适应Palmer干旱指数(scPDSI) | P、PET | PDSI的修正版,根据不同区域的气候特点对PDSI校正参数 | 解决了PDSI的空间局限性 | Wells等[ |
蒸散发压力指数(ESI) | PET、ET | 描述了实际蒸散发和潜在蒸散发比值的异常 | 可监测骤旱 | Anderson等[ |
蒸散发需求干旱指数(EDDI) | PET | 基于大气蒸散发需求,考虑了蒸散发过程中的辐射强迫项和平流强迫项 | 多时间尺度,忽略下垫面的影响 | Hobbins等[ |
标准化土壤湿度指数(SSI) | SM | 表征某时段内的土壤湿度出现的概率 | 考虑了土壤含水量的分布特征 | Hao等[ |
土壤湿度距平指数(SMA) | SM | 表征与平均状态下土壤湿度的差距 | 消除了季节影响 | Sheffield等[ |
土壤湿度百分位数(SMP) | SM | 利用长期土壤湿度的百分位确定干旱程度的阈值 | 利于时空比较 | Shukla等[ |
土壤湿度指数(SMI) | SM、SMWP、 SMFC | 土壤水分含量与凋萎含水量的差值为土壤有效含水量的一半时,土壤开始受到水分的胁迫 | 考虑土壤性质,不需要长时间湿度数据 | Hunt等[ |
土壤水分亏缺指数(SWDI) | SM、SMWP、 SMFC | 当土壤水分含量开始低于田间持水量时,植物即将受到水分的胁迫 | 考虑了植物生理状态与土壤水分的关系 | Martínez-Fernández等[ |
植被条件指数(VCI) | NDVI | 在同期对各月NDVI归一化 | 消除地形、气候、植被覆盖的影响 | Liu等[ |
温度条件指数(TCI) | LST | 在同期对各月LST归一化 | 消除地形、气候、植被覆盖的影响 | Kogan[ |
植被健康指数(VHI) | NDVI、LST | 综合考虑VCI和LST,赋予它们相同的权重 | 同时考虑水和热的胁迫 | Kogan[ |
温度植被干旱指数(TVDI) | NDVI、LST | 由NDVI和LST确定干边和湿边的方程,表征作物面临水分胁迫的程度 | 适用于小区域的干旱监测 | Sandholt等[ |
作物缺水指数(CWSI) | PET、ET | 利用水分能量平衡原理,综合考虑土壤水分和农田蒸散发的关系 | 物理意义明确,适应性较强 | Jackson等[ |
水分亏缺指数(WDI) | Ts、Ta、SAVI | 以冠层温度为基础,在能量平衡双层模型的基础上建立 | 扩展了在低植被覆盖下的应用 | Moran等[ |
指数 | 输入 | 构建方法 | 优势 | 主要作者 |
---|---|---|---|---|
植被干旱响应指数(VegDRI) | 植被指数、气象干旱指数和土壤有效持水量等 | 机器学习 | 实时国家尺度监测 | Brown等[ |
干旱严重指数(DSI) | PET、ET、NDVI | 权重组合 | 利用遥感数据监测全球 | Mu等[ |
干旱状况指数(SDCI) | NDVI、LST、P | 权重组合 | 适合在湿润区域监测 | Rhee等[ |
多元标准化干旱指数(MSDI) | SPI、SSI | Copula联合分布 | 捕获降水或土壤水分所表明的干旱条件 | Hao等[ |
综合尺度干旱指数(ISDI) | NDVI、LST、P、SM | 权重组合 | 综合了农业干旱过程中一系列重要变量 | Lu等[ |
土壤水分农业干旱指数(SMADI) | LST、NDVI、SSM | 权重组合 | 在雨养农业系统中有好的监测效果 | Sánchez等[ |
表2 常见综合干旱指数
Table 2 The common comprehensive drought indices
指数 | 输入 | 构建方法 | 优势 | 主要作者 |
---|---|---|---|---|
植被干旱响应指数(VegDRI) | 植被指数、气象干旱指数和土壤有效持水量等 | 机器学习 | 实时国家尺度监测 | Brown等[ |
干旱严重指数(DSI) | PET、ET、NDVI | 权重组合 | 利用遥感数据监测全球 | Mu等[ |
干旱状况指数(SDCI) | NDVI、LST、P | 权重组合 | 适合在湿润区域监测 | Rhee等[ |
多元标准化干旱指数(MSDI) | SPI、SSI | Copula联合分布 | 捕获降水或土壤水分所表明的干旱条件 | Hao等[ |
综合尺度干旱指数(ISDI) | NDVI、LST、P、SM | 权重组合 | 综合了农业干旱过程中一系列重要变量 | Lu等[ |
土壤水分农业干旱指数(SMADI) | LST、NDVI、SSM | 权重组合 | 在雨养农业系统中有好的监测效果 | Sánchez等[ |
等级 | 描述 | 指标范围 | ||||
---|---|---|---|---|---|---|
PDSI | CPC土壤湿度模式 | 每周USGS流量指标 | SPI | 客观干旱指标带 | ||
D0 | 偏干 | -1.0~-1.9 | 21~30 | 21~30 | -0.5~-0.7 | 21~30 |
D1 | 轻旱 | -2.0~-2.9 | 11~0 | 11~20 | -0.8~-1.2 | 11~20 |
D2 | 中旱 | -3.0~-3.9 | 6~10 | 6~10 | -1.3~-1.5 | 6~10 |
D3 | 重旱 | -4.0~-4.9 | 3~5 | 3~5 | -1.6~-1.9 | 3~5 |
D4 | 特旱 | ≤-5.0 | 0~2 | 0~2 | ≤-2.0 | 0~2 |
表3 USDM中关键客观指标与干旱级别的联系
Table 3 The links between 6 key objective indicators and drought levels in USDM
等级 | 描述 | 指标范围 | ||||
---|---|---|---|---|---|---|
PDSI | CPC土壤湿度模式 | 每周USGS流量指标 | SPI | 客观干旱指标带 | ||
D0 | 偏干 | -1.0~-1.9 | 21~30 | 21~30 | -0.5~-0.7 | 21~30 |
D1 | 轻旱 | -2.0~-2.9 | 11~0 | 11~20 | -0.8~-1.2 | 11~20 |
D2 | 中旱 | -3.0~-3.9 | 6~10 | 6~10 | -1.3~-1.5 | 6~10 |
D3 | 重旱 | -4.0~-4.9 | 3~5 | 3~5 | -1.6~-1.9 | 3~5 |
D4 | 特旱 | ≤-5.0 | 0~2 | 0~2 | ≤-2.0 | 0~2 |
等级 | 描述 | 概率/% |
---|---|---|
D0 | 偏干 | (20,30] |
D1 | 轻旱 | (10,20] |
D2 | 中旱 | (5,10] |
D3 | 重旱 | (2,5] |
D4 | 特旱 | ≤2 |
表4 干旱级别划分及其出现概率
Table 4 The classification of drought and their occurrence probability
等级 | 描述 | 概率/% |
---|---|---|
D0 | 偏干 | (20,30] |
D1 | 轻旱 | (10,20] |
D2 | 中旱 | (5,10] |
D3 | 重旱 | (2,5] |
D4 | 特旱 | ≤2 |
等级 | 类型 | MCI | 干旱影响程度 |
---|---|---|---|
1 | 无旱 | MCI >-0.5 | 地表湿润,作物水分供应充足;地表水资源充足,能满足人们生产、生活的需要 |
2 | 轻旱 | -1.0<MCI≤-0.5 | 地表空气干燥,土壤出现水分轻度不足,作物轻微缺水,叶色不正;水资源出现短缺,但对生产、生活的影响不大 |
3 | 中旱 | -1.5<MCI≤-1.0 | 土壤表面干燥,土壤出现水分不足,作物叶片出现萎蔫现象;水资源短缺,对生产、生活造成影响 |
4 | 重旱 | -2.0<MCI≤-1.5 | 土壤水分严重不足,出现干土层(1~10 cm),作物出现枯死现象;河流出现断流,水资源严重不足,对生产、生活造成较重的影响 |
5 | 特旱 | MCI≤-2.0 | 土壤水分持续严重不足,出现于较厚干土层(大于10 cm),作物出现大面积枯死;多条河流出现断流,水资源严重不足,对生产、生活造成严重影响 |
表5 MCI 干旱等级划分
Table 5 The classification of drought in MCI
等级 | 类型 | MCI | 干旱影响程度 |
---|---|---|---|
1 | 无旱 | MCI >-0.5 | 地表湿润,作物水分供应充足;地表水资源充足,能满足人们生产、生活的需要 |
2 | 轻旱 | -1.0<MCI≤-0.5 | 地表空气干燥,土壤出现水分轻度不足,作物轻微缺水,叶色不正;水资源出现短缺,但对生产、生活的影响不大 |
3 | 中旱 | -1.5<MCI≤-1.0 | 土壤表面干燥,土壤出现水分不足,作物叶片出现萎蔫现象;水资源短缺,对生产、生活造成影响 |
4 | 重旱 | -2.0<MCI≤-1.5 | 土壤水分严重不足,出现干土层(1~10 cm),作物出现枯死现象;河流出现断流,水资源严重不足,对生产、生活造成较重的影响 |
5 | 特旱 | MCI≤-2.0 | 土壤水分持续严重不足,出现于较厚干土层(大于10 cm),作物出现大面积枯死;多条河流出现断流,水资源严重不足,对生产、生活造成严重影响 |
等级 | 分类条件 |
---|---|
三级警告 | SPI3<-1或SPI1<-2 |
二级警告 | SMA<-1且(SPI3<-1或SPI1<-2) |
一级警告 | |
部分恢复 | ( |
完全恢复 | (SPI3m-1<-1且SPI3>-1)或(SPI1m-1<-2且SPI1>-2) |
表6 CDI 干旱等级划分
Table 6 The classification of drought in CDI
等级 | 分类条件 |
---|---|
三级警告 | SPI3<-1或SPI1<-2 |
二级警告 | SMA<-1且(SPI3<-1或SPI1<-2) |
一级警告 | |
部分恢复 | ( |
完全恢复 | (SPI3m-1<-1且SPI3>-1)或(SPI1m-1<-2且SPI1>-2) |
干旱等级 | wVHI |
---|---|
无旱 | wVHI≥42 |
轻微 | 38≤wVHI<42 |
中等 | 35≤wVHI<48 |
严重 | 25≤wVHI<35 |
极端 | wVHI<25 |
表7 ASIS干旱等级划分
Table 7 The classification of drought in ASIS
干旱等级 | wVHI |
---|---|
无旱 | wVHI≥42 |
轻微 | 38≤wVHI<42 |
中等 | 35≤wVHI<48 |
严重 | 25≤wVHI<35 |
极端 | wVHI<25 |
1 | 刘宪锋,朱秀芳,潘耀忠,等.农业干旱监测研究进展与展望[J].地理学报,2015,70(11):1835-1848. |
2 | Zhao X, Xia H, Liu B,et al.Spatiotemporal comparison of drought in Shaanxi-Gansu-Ningxia from 2003 to 2020 using various drought indices in Google Earth Engine[J].Remote Sensing,2022,14(7):1570. |
3 | Ha T V, Huth J, Bachofer F,et al.A review of earth observation-based drought studies in Southeast Asia[J].Remote Sensing,2022,14(15):3763. |
4 | 高超,赵强强,张菲菲.基于中文文献计量统计分析的农业干旱灾害研究进展[J].华北水利水电大学学报(自然科学版),2022,43(2):1-9. |
5 | Yao N, Li Y, Dong Q,et al.Influence of the accuracy of reference crop evapotranspiration on drought monitoring using standardized precipitation evapotranspiration index in mainland China[J].Land Degradation & Development,2020,31(2):266-282. |
6 | Tian L, Yuan S, Quiring S M.Evaluation of six indices for monitoring agricultural drought in the south-central United States[J].Agricultural and Forest Meteorology,2018,249:107-119. |
7 | 郝增超,侯爱中,张璇,等.干旱监测与预报研究进展与展望[J].水利水电技术,2020,51(11):30-40. |
8 | Zargar A, Sadiq R, Naser B,et al.A review of drought indices[J].Environmental Reviews,2011,19:333-349. |
9 | 宋琳琳,张强,任余龙,等.PDSI及scPDSI干旱指数在中国西南地区适用性分析[J].中国沙漠,2021,41(2):242-252. |
10 | 杨庆,李明星,郑子彦,等.7种气象干旱指数的中国区域适应性[J].中国科学:地球科学,2017,47(3):337-353. |
11 | Zhao Z, Wang K.Capability of existing drought indices in reflecting agricultural drought in China[J].Journal of Geophysical Research:Biogeosciences,2021,126(8):JG006064. |
12 | 粟晓玲,张更喜,冯凯.干旱指数研究进展与展望[J].水利与建筑工程学报,2019,17(5):9-18. |
13 | Rojas O, Racionzer I P, Li Y,et al.Surveillance of agricultural drought worldwide from space using the FAO-Agriculture Stress Index System (ASIS)[R]//2019 edition of the Global Assessment Report on Disaster Risk Reduction.2019. |
14 | Crocetti L.Earth observation for agricultural drought monitoring in the Pannonian Basin (southeastern Europe):current state and future directions[J].Regional Environmental Change,2020,20(4):1-17. |
15 | Saha T R, Shrestha P K, Rakovec O,et al.A drought monitoring tool for South Asia[J].Environmental Research Letters,2021,16(5):54014. |
16 | 吴炳方,蒙继华,李强子.国外农情遥感监测系统现状与启示[J].地球科学进展,2010,25(10):1003-1012. |
17 | 吴志勇,程丹丹,何海,等.综合干旱指数研究进展[J].水资源保护,2021,37(1):36-45. |
18 | Cao S, Zhang L, He Y,et al.Effects and contributions of meteorological drought on agricultural drought under different climatic zones and vegetation types in Northwest China[J].Science of The Total Environment,2022,821:153270. |
19 | 王劲松,郭江勇,周跃武,等.干旱指标研究的进展与展望[J].干旱区地理,2007(1):60-65. |
20 | Alley W M.The Palmer drought severity index:limitations and assumptions[J].Journal of Applied Meteorology and Climatology,1984,23(7):1100-1109. |
21 | Dai A.Drought under global warming:a review[J].Wires Climate Change,2011,2(1):45-65. |
22 | Dai A.Characteristics and trends in various forms of the Palmer drought severity index during 1900-2008[J].Journal of Geophysical Research,2011,116(D12):D12115. |
23 | Sheffield J, Wood E F, Roderick M L.Little change in global drought over the past 60 years[J].Nature,2012,491(7424):435-438. |
24 | Guttman N B, Wallis J R, Hosking J R M.Spatial comparability of the Palmer drought severity index[J].JAWRA Journal of the American Water Resources Association,1992,28(6):1111-1119. |
25 | Wells N, Goddard S, Hayes M J.A self-calibrating palmer drought severity index[J].Journal of Climate,2004,17(12):2335-2351. |
26 | Guttman N B.Comparing the Palmer drought index and the standardized precipitation index1[J].Journal of the American Water Resources Association,1998,34(1):113-121. |
27 | McKee T B, Doesken N J, Kleist J.The relationship of drought frequency and duration to time scales[C]//Anaheim,USA:Eighth Conference on Applied Climatology,1993:179-184. |
28 | Wu J, Zhou L, Liu M,et al.Establishing and assessing the integrated surface drought index (ISDI) for agricultural drought monitoring in mid-eastern China[J].International Journal of Applied Earth Observation and Geoinformation,2013,23:397-410. |
29 | Barker L J, Hannaford J, Chiverton A,et al.From meteorological to hydrological drought using standardised indicators[J].Hydrology and Earth System Sciences,2016,20(6):2483-2505. |
30 | Labudová L, Labuda M, Takáč J.Comparison of SPI and SPEI applicability for drought impact assessment on crop production in the Danubian Lowland and the East Slovakian Lowland[J].Theoretical and Applied Climatology,2017,128(1/2):491-506. |
31 | Vicente-Serrano S M, Beguería S, López-Moreno J I.A multiscalar drought index sensitive to global warming:the standardized precipitation evapotranspiration index[J].Journal of Climate,2010,23(7):1696-1718. |
32 | Tian Y, Xu Y P, Wang G.Agricultural drought prediction using climate indices based on support vector regression in Xiangjiang River basin[J].Science of The Total Environment,2018,622/623:710-720. |
33 | Anderson M C, Hain C, Wardlow B,et al.Evaluation of drought indices based on thermal remote sensing of evapotranspiration over the continental United States[J].Journal of Climate,2011,24(8):2025-2044. |
34 | Anderson M C, Zolin C A, Sentelhas P C,et al.The evaporative stress index as an indicator of agricultural drought in Brazil:an assessment based on crop yield impacts[J].Remote Sensing of Environment,2016,174:82-99. |
35 | Hobbins M T, Wood A, McEvoy D J,et al.The evaporative demand drought index.part I:linking drought evolution to variations in evaporative demand[J].Journal of Hydrometeorology,2016,17(6):1745-1761. |
36 | Nguyen H, Wheeler M C, Otkin J A,et al.Using the evaporative stress index to monitor flash drought in Australia[J].Environmental Research Letters,2019,14(6):64016. |
37 | Chatterjee S, Desai A R, Zhu J,et al.Soil moisture as an essential component for delineating and forecasting agricultural rather than meteorological drought[J].Remote Sensing of Environment,2022,269:112833. |
38 | 李毅,陈新国,赵会超,等.土壤干旱遥感监测的最新研究进展[J].水利与建筑工程学报,2021,19(1):1-7. |
39 | Shen Z, Zhang Q, Singh V P,et al.Agricultural drought monitoring across Inner Mongolia,China:model development,spatiotemporal patterns and impacts[J].Journal of Hydrology,2019,571:793-804. |
40 | 刘志明,张柏,晏明,等.土壤水分与干旱遥感研究的进展与趋势[J].地球科学进展,2003,18(4):576-583. |
41 | Li Z, Hao Z, Shi X,et al.An agricultural drought index to incorporate the irrigation process and reservoir operations:a case study in the Tarim River Basin[J].Global and Planetary Change,2016,143:10-20. |
42 | Hao Z, AghaKouchak A.Multivariate standardized drought index:a parametric multi-index model[J].Advances in Water Resources,2013,57:12-18. |
43 | Sheffield J, Wood E F.Global trends and variability in soil moisture and drought characteristics,1950-2000,from observation-driven simulations of the terrestrial hydrologic cycle[J].Journal of Climate,2008,21(3):432-458. |
44 | Shukla S, Steinemann A C, Lettenmaier D P.Drought monitoring for Washington State:indicators and applications[J].Journal of Hydrometeorology,2011,12(1):66-83. |
45 | 胡延斌,张强,肖国举,等.中国半干旱区农田土壤碳、氮、磷含量对玉米生产的影响[J].中国沙漠,2022,42(3):261-273. |
46 | Hunt E D, Hubbard K G, Wilhite D A,et al.The development and evaluation of a soil moisture index[J].International Journal of Climatology,2009,29(5):747-759. |
47 | Martínez-Fernández J, González-Zamora A, Sánchez N,et al.A soil water based index as a suitable agricultural drought indicator[J].Journal of Hydrology,2015,522:265-273. |
48 | Wu Z, Qiu J, Liu S,et al.Advances in agricultural drought monitoring based on soil moisture[J].Progress in Geography,2020,39(10):1758-1769. |
49 | Wang F, Wang Z, Yang H,et al.Capability of remotely sensed drought indices for representing the spatio-temporal variations of the meteorological droughts in the Yellow River Basin[J].Remote Sensing,2018,10(11):1834. |
50 | 周磊,武建军,张洁.以遥感为基础的干旱监测方法研究进展[J].地理科学,2015,35(5):630-636. |
51 | Chang Q, Xiao X, Jiao W,et al.Assessing consistency of spring phenology of snow-covered forests as estimated by vegetation indices,gross primary production,and solar-induced chlorophyll fluorescence[J].Agricultural and Forest Meteorology,2019,275:305-316. |
52 | Kogan F N.Droughts of the late 1980s in the United States as derived from NOAA Polar-Orbiting satellite data[J].Bulletin of the American Meteorological Society,1995,76(5):655-668. |
53 | Kogan F N.Application of vegetation index and brightness temperature for drought detection[J].Advances in Space Research,1995,15(11):91-100. |
54 | Kogan F N.Remote sensing of weather impacts on vegetation in non-homogeneous areas[J].International Journal of Remote Sensing,1990,11(8):1405-1419. |
55 | Kogan F N.Global drought watch from space[J].Bulletin of the American Meteorological Society,1997,78(4):621-636. |
56 | Kogan F N.Operational space technology for global vegetation assessment[J].Bulletin of the American Meteorological Society,2001,82(9):1949-1964. |
57 | Bento V A, Gouveia C M, DaCamara C C,et al.A climatological assessment of drought impact on vegetation health index[J].Agricultural and Forest Meteorology,2018,259:286-295. |
58 | Sandholt I, Rasmussen K, Andersen J.A simple interpretation of the surface temperature/vegetation index space for assessment of surface moisture status[J].Remote Sensing of Environment,2002,79(2/3):213-224. |
59 | Jackson R D, Kustas W P, Choudhury B J.A reexamination of the crop water stress index[J].Irrigation Science,1988,9(4):309-317. |
60 | 李柏贞,周广胜.干旱指标研究进展[J].生态学报,2014,34(5):1043-1052. |
61 | Moran M S, Clarke T R, Inoue Y,et al.Estimating crop water deficit using the relation between surface-air temperature and spectral vegetation index[J].Remote Sensing of Environment,1994,49(3):246-263. |
62 | Pandiyan S, Navaneethan C, Vijayan R,et al.Evaluation of drought using satellite solar-induced chlorophyll fluorescence during crop development stage over Xinjiang,China[J].Measurement,2022,187:110327. |
63 | Zhang Z, Xu W, Qin Q,et al.Monitoring and assessment of agricultural drought based on solar-induced Chlorophyll Fluorescence during growing season in North China Plain[J].IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing,2021,14:775-790. |
64 | Li S, Wang X, Gao C,et al.Meteorological drought warning research in Fujian Province,China during 1971-2016[J].Journal of Geoscience and Environment Protection,2019,7(11):220-228. |
65 | Liu W T, Kogan F N.Monitoring regional drought using the vegetation condition index[J].International Journal of Remote Sensing,1996,17(14):2761-2782. |
66 | 江笑薇,白建军,刘宪峰.基于多源信息的综合干旱监测研究进展与展望[J].地球科学进展,2019,34(3):275-287. |
67 | Brown J F, Wardlow B D, Tadesse T,et al.The vegetation drought response index (VegDRI):a new integrated approach for monitoring drought stress in vegetation[J].GIScience & Remote Sensing,2008,45(1):16-46. |
68 | Mu Q, Zhao M, Kimball J S,et al.A remotely sensed global terrestrial drought severity index[J].Bulletin of the American Meteorological Society,2013,94(1):83-98. |
69 | Rhee J, Im J, Carbone G J.Monitoring agricultural drought for arid and humid regions using multi-sensor remote sensing data[J].Remote Sensing of Environment,2010,114(12):2875-2887. |
70 | Lu J, Carbone G J, Gao P.Mapping the agricultural drought based on the long-term AVHRR NDVI and North American Regional Reanalysis (NARR) in the United States,1981-2013[J].Applied Geography,2019,104:10-20. |
71 | Sánchez N, González-Zamora Á, Martínez-Fernández J,et al.Integrated remote sensing approach to global agricultural drought monitoring[J].Agricultural and Forest Meteorology,2018,259:141-153. |
72 | 王同亮,马绍休,高扬,等.小波包分解与多个机器学习模型耦合在风速预报中的对比[J].中国沙漠,2021,41(2):38-50. |
73 | U.S.Drought Monitor[EB/OL].[2022-04-18].. |
74 | Svoboda M, LeComte D, Hayes M,et al.The drought monitor[J].Bulletin of the American Meteorological Society,2002,83(8):1181-1190. |
75 | 国家气候中心. 气象干旱等级: [S].北京:中国标准出版社,2017. |
76 | European Drought Observatory[EB/OL].[2022-04-18].. |
77 | UNFAO.Agriculture Stress Index System (ASIS) [EB/OL].[2022-04-18].. |
78 | Unganai L S, Kogan F N.Drought monitoring and corn yield estimation in Southern Africa from AVHRR data[J].Remote Sensing of Environment,1998,63(3):219-232. |
79 | NACP.Drought Monitor[EB/OL].[2022-08-02].. |
80 | Canadian Drought Monitor [EB/OL].[2022-08-02].. |
81 | IWMI.Drought Monitoring System[EB/OL].[2022-08-02].. |
82 | Agutu N O.Assessing multi-satellite remote sensing,reanalysis,and land surface models' products in characterizing agricultural drought in East Africa[J].Remote Sensing of Environment,2017,194:287-302. |
83 | Shahzaman M, Zhu W, Ullah I,et al.Comparison of multi-year reanalysis,models,and satellite remote sensing products for agricultural drought monitoring over South Asian Countries[J].Remote Sensing,2021,13(16):3294. |
84 | Golian S.On the use of satellite,gauge,and reanalysis precipitation products for drought studies[J].Environmental Research Letters, 2019, 14(7):75005. |
85 | Jiao W, Tian C, Chang Q,et al.A new multi-sensor integrated index for drought monitoring[J].Agricultural and Forest Meteorology,2019,268:74-85. |
86 | West H, Quinn N, Horswell M.Remote sensing for drought monitoring & impact assessment:progress,past challenges and future opportunities[J].Remote Sensing of Environment,2019,232:111291. |
87 | Jiao W, Wang L, Novick K A,et al.A new station-enabled multi-sensor integrated index for drought monitoring[J].Journal of Hydrology,2019,574:169-180. |
88 | Cartwright J M, Littlefield C E, Michalak J L,et al.Topographic,soil,and climate drivers of drought sensitivity in forests and shrublands of the Pacific Northwest,USA[J].Scientific Reports,2020,10(1):18486. |
89 | 田丰,杨建华,刘雷震,等.地理学视角的干旱传播概念、特征与影响因素研究进展[J].地理科学进展,2022,41(1):173-184. |
90 | Ding Y, Xu J, Wang X,et al.Propagation of meteorological to hydrological drought for different climate regions in China[J].Journal of Environmental Management,2021,283:111980. |
91 | Yang F, Duan X, Guo Q,et al.The spatiotemporal variations and propagation of droughts in plateau mountains of China[J].Science of The Total Environment,2022,805:150257. |
92 | Zhang X, Duan Y, Duan J,et al.A daily drought index based on evapotranspiration and its application in regional drought analyses[J].Science China Earth Sciences,2022,65(2):317-336. |
93 | Jia Y, Zhang B, Ma B.Daily SPEI reveals long-term change in drought characteristics in Southwest China[J].Chinese Geographical Science,2018,28(4):680-693. |
94 | Christian J I, Basara J B, Hunt E D,et al.Global distribution,trends,and drivers of flash drought occurrence[J].Nature Communications,2021,12(1):6330. |
95 | Byun H R, Wilhite D A.Objective quantification of drought severity and duration[J].Journal of Climate,1999,12:10. |
96 | Wang Q, Zeng J, Qi J,et al.A multi-scale daily SPEI dataset for drought characterization at observation stations over mainland China from 1961 to 2018[J].Earth System Science Data,2021,13(2):331-341. |
97 | Pendergrass A G, Meehl G A, Pulwarty R,et al.Flash droughts present a new challenge for subseasonal-to-seasonal prediction[J].Nature Climate Change,2020,10(3):191-199. |
98 | Niu J, Chen J, Sun L.Exploration of drought evolution using numerical simulations over the Xijiang (West River) basin in south China[J].Journal of Hydrology,2015,526:68-77. |
99 | Zhao M, Geruo A, Velicogna I,et al.Satellite observations of regional drought severity in the continental United States using GRACE-based terrestrial water storage changes[J].Journal of Climate,2017,30(16):6297-6308. |
100 | 陈钦萍,刘振滨,杨建州.干旱灾害对农业技术效率的影响:基于灌溉水平的门槛效应[J].中国沙漠,2022,42(3):213-221. |
101 | Yu H, Zhang Q, Xu C Y,et al.Modified Palmer drought severity index:model improvement and application[J].Environment International,2019,130:104951. |
102 | Bento V A, Gouveia C M, DaCamara C C,et al.The roles of NDVI and land surface temperature when using the vegetation health index over dry regions[J].Global and Planetary Change,2020,190:103198. |
103 | Huang S, Huang Q, Chang J,et al.The response of agricultural drought to meteorological drought and the influencing factors:acase study in the Wei River Basin,China[J].Agricultural Water Management,2015,159:45-54. |
104 | Li R, Chen N, Zhang X,et al.Quantitative analysis of agricultural drought propagation process in the Yangtze River Basin by using cross wavelet analysis and spatial autocorrelation[J].Agricultural and Forest Meteorology,2020,280:107809. |
105 | Son B, Park S, Im J,et al.A new drought monitoring approach:vector projection analysis (VPA)[J].Remote Sensing of Environment,2021,252:112145. |
106 | McCabe M F, Rodell M, Alsdorf D E,et al.The future of earth observation in hydrology[J].Hydrology and Earth System Sciences,2017,21(7):3879-3914. |
107 | Smith W K, Dannenberg M P, Yan D,et al.Remote sensing of dryland ecosystem structure and function:progress,challenges,and opportunities[J].Remote Sensing of Environment,2019,233:111401. |
108 | Zhang X, Hao Z, Singh V P,et al.Drought propagation under global warming:characteristics,approaches,processes,and controlling factors[J].Science of The Total Environment,2022,838:156021. |
109 | Hao Z, Yuan X, Xia Y,et al.An overview of drought monitoring and prediction systems at regional and global scales[J].Bulletin of the American Meteorological Society,2017,98(9):1879-1896. |
110 | Caccamo G, Chisholm L A, Bradstock R A,et al.Assessing the sensitivity of MODIS to monitor drought in high biomass ecosystems[J].Remote Sensing of Environment,2011,115(10):2626-2639. |
111 | Tuvdendorj B, Wu B, Zeng H,et al.Determination of appropriate remote sensing indices for spring wheat yield estimation in Mongolia[J].Remote Sensing,2019,11(21):2568. |
112 | Rahmati O, Falah F, Dayal K S,et al.Machine learning approaches for spatial modeling of agricultural droughts in the south-east region of Queensland Australia[J].Science of The Total Environment,2020,699:134230. |
113 | Xu D, Zhang Q, Ding Y,et al.Application of a hybrid ARIMA-LSTM model based on the SPEI for drought forecasting[J].Environmental Science and Pollution Research,2022,29(3):4128-4144. |
114 | AghaKouchak A, Nakhjiri N.A near real-time satellite-based global drought climate data record[J].Environmental Research Letters,2012,7(4):44037. |
115 | 张强,姚玉璧,李耀辉,等.中国干旱事件成因和变化规律的研究进展与展望[J].气象学报,2020,78(3):500-521. |
116 | Zhang X, Chen N, Li J,et al.Multi-sensor integrated framework and index for agricultural drought monitoring[J].Remote Sensing of Environment,2017,188:141-163. |
117 | Manfreda S, McCabe M F, Miller P E,et al.On the use of unmanned aerial systems for environmental monitoring[J].Remote Sensing,2018,10(4):641. |
118 | 梁顺林,白瑞,陈晓娜,等.2019年中国陆表定量遥感发展综述[J].遥感学报,2020,24(6):618-671. |
119 | 王利民,刘佳,杨玲波,等.农业干旱遥感监测的原理、方法与应用[J].中国农业信息,2018,30(4):32-47. |
120 | Alahacoon N, Edirisinghe M.A comprehensive assessment of remote sensing and traditional based drought monitoring indices at global and regional scale[J].Geomatics,Natural Hazards and Risk,2022,13(1):762-799. |
[1] | 宋琳琳, 张强, 任余龙, 李忆平, 韩兰英, 柳媛普, 王素萍. PDSI及sc_PDSI干旱指数在中国西南地区适用性分析[J]. 中国沙漠, 2021, 41(2): 242-252. |
[2] | 韩兰英, 张强, 贾建英, 王有恒, 黄涛. 气候变暖背景下中国干旱强度、频次和持续时间及其南北差异性[J]. 中国沙漠, 2019, 39(5): 1-10. |
[3] | 王莺, 赵文, 张强. 中国北方地区农业干旱脆弱性评价[J]. 中国沙漠, 2019, 39(4): 149-158. |
[4] | 王姝, 李金建, 秦宁生. 基于历史帕默尔干旱指数(PDSI)数据集重建的长江源区过去706 a径流量[J]. 中国沙漠, 2019, 39(3): 126-135. |
[5] | 毕敏慧, 龚磊, 蒋超, 姚广前, 杨钰婕, 方向文. 乔木和灌木枝水分传导脆弱性沿降水量递增的分化[J]. 中国沙漠, 2018, 38(6): 1243-1251. |
[6] | 黄小梅, 肖丁木, 秦宁生. 大果圆柏(Juniperus tibetica)树轮记录的1606-2012年长江源区4-6月帕尔默干旱指数变化[J]. 中国沙漠, 2017, 37(4): 784-792. |
[7] | 韩兰英, 张强, 赵红岩, 黄涛, 贾建英, 张旭东. 甘肃省农业干旱灾害损失特征及其对气候变暖的响应[J]. 中国沙漠, 2016, 36(3): 767-776. |
[8] | 张喆, 丁建丽, 李鑫, 鄢雪英. TVDI用于干旱区农业旱情监测的适宜性[J]. 中国沙漠, 2015, 35(1): 220-227. |
[9] | 杨秀海, 卓嘎, 罗布. 基于MODIS数据的青藏高原旱情监测研究[J]. 中国沙漠, 2014, 34(2): 527-534. |
[10] | 李红英1,2, 张晓煜1,2, 袁海燕1,2, 段晓凤1,2. 宁夏农业干旱灾害综合风险分析[J]. 中国沙漠, 2013, 33(3): 882-887. |
[11] | 刘卫国1,2,3, 王 曼1,2, 丁俊祥1,2, 吕光辉1,2. 帕默尔干旱指数在天山北坡典型绿洲干旱特征分析中的适用性[J]. 中国沙漠, 2013, 33(1): 249-257. |
[12] | 李 平;刘 勇;杜继稳;侯明全;侯建忠;方建刚. 陕北地区沙尘暴天气分析及预报[J]. 中国沙漠, 2006, 26(2): 295-299. |
[13] | 陈仲全, 张正栋, 徐国昌. 干旱指数与旱灾测防系统[J]. 中国沙漠, 1995, 15(1): 10-18. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
©2018中国沙漠 编辑部
地址: 兰州市天水中路8号 (730000)
电话:0931-8267545
Email:caiedit@lzb.ac.cn;desert@lzb.ac.cn